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ABSTRACT The relationship between environmental
variability and niche overlap is studied for a class of model
biological communities in which several species compete
on a one-dimensional continuum of resources, e.g., food
size. In a strictly unvarying (deterministic) environment,
there is in general no limit to the degree of overlap, short
of complete congruence. However, in a fluctuating (sto-
chastic) environment, the average food sizes for species
adjacent on the resource spectrum must differ by an
amount roughly equal to the standard deviation in the
food size taken by either individual species. This mathe-
matical result emerges in a nonobvious yet robust way
for environmental fluctuations whose variance relative to
their mean ranges from around 0.01% to around 30%. In
short, there is an effective limit to niche overlap in the real
world, and this limit is insensitive to the degree of en-
vironmental fluctuation, unless it be very severe. Recent
field work, particularly on bird guilds, seems in harmony
with the model's conclusion.

One of the central concepts in ecology is the competitive
exclusion principle, which forbids the coexistence of two or
more species making their livings in identical ways. Recently,
an increasing amount of attention has been paid to the ques-
tions: How similar can competing species be if they are to
remain in an equilibrium community? How identical is
"identical"? How close can species be packed in a natural
environment?
An answer to these questions may begin by noticing that in

laboratory experiments, where the environment can be care-
fully kept unvarying, species whose ecology is well-nigh identi-
cal have coexisted for long periods (1). A conjecture (2, 3)
is that in the real world, environmental fluctuations will put a
limit to the closeness of species packing compatible with an
enduring community, and that species will be packed closer
or wider as the environmental variations are smaller or larger.
Motivated by these ideas, we consider a one-dimensional

resource spectrum, sustaining a series of species, each of which
has a preferred position in the spectrum, and a characteristic
variance about this mean position, as given by some "utiliza-
tion function" (see Fig. 1). For example, the resource spec-
trum may be food size, and the consumers may be bird
species each having a utilization function that describes their
mean food size and its variance. The dynamics of this situa-
tion may be plausibly modeled by a system of first-order dif-
ferential equations, with competition coefficients that depend
on how closely species are packed; that is, on the degree of
niche overlap (on the ratio of d to w in Fig. 1).

In the stability analysis of such models, two qualitatively
different circumstances need be distinguished. In the un-

realistic case when all the environmental parameters are
strictly constant (deterministic), then in general the system
remains stable even if an arbitrarily large number of species
are packed in, arbitrarily close. On the other hand, when the
relevant environmental parameters fluctuate (stochastic
environment), there is a limit to the niche overlap consistent
with long-term stability.
However, this limit to species packing depends on the en-

vironmental variance in a far-from-obvious and extremely
interesting way (Fig. 3). If the fluctuations in the resource
spectrum are severe, having variances comparable in mag-
nitude with their mean values, the species packing is indeed
roughly proportional to the environmental variance, as one
would expect intuitively. But for fluctuations ranging from
moderate to exceedingly small, the species packing attains
an effective limiting value roughly equal to the width of the
utilization functions. Thus, as the ratio between the variance
and mean value in the resource spectrum, or other pertinent
environmental parameter, falls from 0.3 to 0.0001, the closest
species packing consistent with stability falls only from 2 to 1
times the utilization function variance. Moreover, our general
result is a robust one, being rather insensitive to the details
of the mathematical model.

Collecting these statements, we observe that the species
packing parameter d indeed goes to zero when the environ-
mental variance becomes strictly zero, but that for any finite
environmental variance, d remains roughly equal to the
utilization function width, w. This result, which at first glance
seems odd, reflects the technical fact that the mathematics
contains an essential singularity around d = 0 (Eq. [6] and
Fig. 2), so that there is a qualitative difference between an
environmental variance that is small but finite, and one that
is zero.

Following Hutchinson's (4) initial observations, Mac Arthur
(3) has recently reviewed a body of semiquantitative work

FIG. 1. The curve labeled K represents some resource con-
tinuum, say amount of food as a function of food size, that sus-
tains various species whose utilization functions (characterized
by a standard deviation w and a separation d) are as shown.
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Xmin

d/w
FIG. 2. The minimum eigenvalue of the stability matrix

(Eq. [4]) as a function of niche overlap, diw, for an n-species
guild, where n = 2,3,4 and n >> 1.

bearing on species packing and character displacement among
competing species. These empirical data, which are discussed
more fully in section IV, match the conclusions drawn from
our model.
Two corollaries are worth mentioning.
First, most of the ideas advanced to account for the gradient

in species diversity as one goes from the tropics to the poles
may be summarized under three headings (1, 5): (i) as a mat-
ter of history, there has been more time for speciation in the
tropics than most other places; (ii) total niche "volume" is
greater in the tropics, which tend to be more productive, less
seasonal, and more floristically complex, both in stratification
and diversity; (iii) more niche overlap is permitted in the
tropics by the unvarying environment. The potential number
of species is the total volume [i.e., (ii) ] divided by the effective
niche volume per species [i.e., (iii)], and this potential will be
realized if enough time is available [i.e., (i) ]. The intuitive
basis for the argument (iii) was set out in the second para-
graph of this introduction, but the quantitative conclusion
that niche overlap is only weakly dependent on the degree of
environmental fluctuation (unless very severe) suggests that
(iii) is a relatively unimportant factor in explaining the
species diversity gradient, at least until one gets to extreme
latitudes. It should be emphasized that our conclusion that
species packing, d, is roughly proportional to utilization func-
tion width, w, implies only that niche overlap is largely inde-
pendent of the environmental variance, 0.2. It remains true
that the total number of species packed into an interval on
the resource spectrum is greater if they are specialists (small
w) than if they are generalists (large w); the question as to
what ultimately determines w remains open.

Second, in this model, which explicitly treats only one
trophic level, it is obvious that greater complexity (in the form
of more species, more closely packed) makes for lesser sta-
bility. In a perfectly stable deterministic environment, arbi-
trarily close packing and rich speciation is possible, and to a
certain limited extent the greater the environmental steadi-
ness, the closer the packing, and the richer the consequent
assembly of species. Insofar as this example adds a piece to
the complexity-stability jigsaw puzzle, it is that complexity
is a fragile thing, permitted in this instance by environmental
steadiness: this is quite the opposite of the conventional
"complexity begets stability" wisdom (6).

Proc. Nat. Acad. Si. USA 69 (1972)

The details of the model are outlined in section 1, and the
results derived in section II. Section III contains a short
account of work bearing on the insensitivity of the main re-
sults to the details of the model.

I. THE MODEL DEFINED

Suppose one has a one-dimensional continuum of resources,
such as food size, or vertical habitat, or horizontal habitat,
that may be schematically depicted as in Fig. 1, where the
curve labeled K shows amount of food as a function of food
size, or amount of habitat as a function of height, and, in
general, amount of resource as a function of x. Suppose
further that this resource sustains various species, each of
which has a utilization function f(x) as depicted in Fig. 1,
which characterizes the species' use of the resource spectrum.
In particular, we note the mean position and the standard
deviation, w, about this mean for the various species; i.e., the
mean and the variance of the food size, or of the habitat
height, etc. The separation, d, between the mean positions of
species that are adjacent on the resource continuum will
clearly be a measure of how densely the species are packed.
Mac Arthur (3, 7) has established a criterion that ensures

that the actual community utilization of the resource will
provide the best least-squares fit to the available resource
spectrum. This requires the populations of the n species,
Ni(t) [labeled sequentially i = 1, 2, ., n], to obey

dN'(t) = Ni(t) _k_-E aijNi(t)] [1]

where the ki are integrals with respect to x over the product
of the resource spectrum and the utilization function of the
ith species, and the competition coefficients atj are convolu-
tion integrals between the utilization functions of the ith and
jth species. With this, we are assured both that the equilib-
rium populations (obtained by setting all d/dt = 0) minimize
the squared difference between available and actual "pro-
duction," and also that nonequilibrium initial populations
will move in time towards this minimum configuration.
Eq. [1 ] is, of course, the Lotka-Volterra competition equa-

tion, but tied to the underlying model illustrated by Fig. 1,
so that we have explicit recipes for the ki and aij in terms of
direct biological assumptions. Specifically, if we assume that
all the species' utilization functions are the usual bell-shaped
gaussian curves, with common width w, and that they are

uniformly spaced along the resource continuum (common
d), the competition coefficients are

atj = (w2)-1/2 dxexp -2 (X- (i-j)d)2

-[a]('1e, [2]

where we have for notational convenience defined

a = exp (-d2/4w2). [3]

Quite apart from the teleology implicit in the assumption that
communities minimize anything, a choice of fit other than
least-squares will lead to equations superficially different
from [1]: however, their competition matrix characterizing
small displacements from equilibrium will end up similar to
that given below. As Lotka (8), and others since, have em-

phasized, Eq. [1] represents the first term in a Taylor ex-

pansion of a much wider class of equations, and thus should
be useful in discussing the stability of potential equilibria.
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In the stability analysis of equations such as [1], we first
find the equilibrium populations, N,*, and then study small-
amplitude perturbations by linearizing about this equilib-
rium. As a further simplification in our model, we rather arbi-
trarily choose the resource spectrum to be such that the
community best-fit to it (i.e., the equilibrium community)
has equal populations for all species; for a large number of
species, n >> 1; this means a flat resource spectrum. The con-
ventional analysis then shows the stability of the system
to be given simply by the eigenvalues of the n X n competi-
tion matrix A, which from [2 ] has the form

1 a a4 a9 a

a 1 a a4.

A = a4 a 1 a .

a9 a4 a 1

[a'.iian.. . . . 1 ~~_j

b

[4]

In short, in this section we have made several particular
assumptions, which have given a specific form for the com-
petition matrix, namely [4]. Indeed, this is a form that can
be plausibly justified from quite ad hoc considerations. In
general, the system stability, and hence the permissible degree
of niche overlap, hinges upon some such competition matrix.
Other assumptions could give other (but similar) matrices,
and the extent to which our conclusions are or are not tied
up with the specific model outlined here is discussed in
section III.

II. THE MODEL ANALYZED
Deterministic environment

As just described, all the parameters in our model system are
unvarying constants. Consequently the equilibrium con-
figuration is stable, with perturbations damping out, so long
as all the eigenvalues, X, of A are positive (notice that a minus
sign was absorbed in the definition of the competition matrix).
But A is a positive definite form for all 0 < a < 1 (i.e., for all
d, see Eq. [3]), with the consequence that stability sets no
limit to the species packing in a strictly deterministic en-
vironment. Moreover, in general the more species packed in,
the better the least-squares fit to the resource spectrum.

Nevertheless it is interesting to see how the smallest eigen-
value of A, which sets the stability character, varies with
niche overlap, as measured by d/w. For n >> 1, we have (see
Appendix)

Xmin = 1 - 2ca + 2a4- 2a9 + 2a6 .... [5]

This series may be summed, by an elegant method, to get an
approximation that is very accurate unless d >> w (see Ap-
pendix):

Xmin = 4Tr1/2(w/d) exp [-Tr2W2/d2]. [6]

This is a remarkable result. For substantial niche overlap,
i.e,. d/w small, Xmin tends to zero faster than any finite power
of d/w: there is an essential singularity at diw = 0. Thus, al-
though Xmin is indeed necessarily positive even for small d/w,
it becomes exceedingly tiny, corresponding to extremely long
damping times. This result foreshadows the results below.

Fig. 2 illustrates Eq. [6], along with numerical results for
n = 2, 3, 4. Notice that for practical purposes, n = 4 is
hard to distinguish from an = co

FIG. 3. The closest niche overlap, diw, consistent with com-
munity stability in a randomly varying environment, whose
fluctuations are characterized by a variance (relative to the mean)
of 2/k. The variance is plotted on a logarithmic scale to em-
phasize that, over a wide range, it has little influence on the
species packing distance for n > 2.

Stochastic environment

More realistically, there will be random environmental
fluctuations, so that the resource continuum will be noisy.
This means the quantities ki in Eq. [1 ] will not be constants,
but rather will be random variables. We assume

ki = ki + 'y(t) [7]

where k, is the constant mean value (having the common value
k for large n), and ey(t) is gaussian "white noise", with vari-
ance measured by 2.
In this stochastic problem, we may no longer talk of the

species populations, but only of their joint probability distri-
bution. To a good approximation, this is a multivariate normal
distribution in the fluctuations about the means, and the
probability of any species becoming extinct will be small
(corresponding to the mechanical "stability" of the determi-
nistic case) if the smallest eigenvalue of the competition
matrix A roughly obeys

Xmin > 0r2/k [8]

This result (9) is commonsensical. In a randomly fluctuating
environment, it is not enough that all the eigenvalues be
positive, but rather they should be bounded away from zero
by an amount roughly proportional to the environmental
noise level.
Combining the qualitative equation, [8], with Fig. 2, we

arrive at an estimate of the closest species packing, diw, con-
sistent with stability for a given environmental noise level,
a2/k. These results, illustrated in Fig. 3, are as discussed in
the Introduction.
In particular, we see explicitly from Eq. [6] that for large

n this closest degree of niche overlap depends on the environ-
mental fluctuations only as -/lun 2, a very weak dependence.
The results for n = 3, 4, although allowing a slightly closer
limiting packing distance, display a similar insensitivity to
the degree of random fluctuation, so long as it is not severe.
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III. HOW ROBUST ARE THESE RESULTS?

The question arises, to what extent are these results peculiar
to our particular model? We catalogue some answers.

(i) We chose gaussian utilization functions. Alternative
f(x) ranging from the opposite extremes of rectangles through
to back-to-back exponentials or Lorentz lineshapes lead to A
matrices different from [4], but the plot of Amin as a function
of diw retains the essential features of Fig. 2 in all cases.

(ii) We chose the width and separation -of the utilization
functions to be constant. If the width w changes in some

systematic way along the resource continuum, our results are

preserved, as long as the separation d changes in the same

proportion, keeping d/w roughly constant.
(iii) The resource spectrum of Fig. 1 was assumed to be

such that, at equilibrium, all populations are equal. Extensive
investigation of various resource spectrum shapes for n =

2, 3, and 4 suggests that our results are not dependent on this
feature, so long as all species are present in significant numbers
in the equilibrium community.

(iv) The implications of use of Eq. [1] were discussed in
section I.

(v) The stochasticity of the environment was taken to be
gaussian "white noise," i.e., no correlation between the
fluctuations at successive instants. In practice, this means only
that fluctuations be correlated over times short compared
to all other relevant time scales in the system (9).

(vi) Our model is for competition in one resource dimen-
sion. Cody's (10) classification of partitioning in the three-
resource dimensions of horizontal habitat, vertical habitat,
and food for 10 grassland bird communities around the world
shows eight of them to be organized largely in one dimension
(food selection), so that our model is not wholly unreasonable.
Moreover, the model is directly relevant to niche overlap
in two or more orthogonal resource dimensions, and may even

be useful as a metaphor for more complicated circumstances.

IV. COMPARISON WITH REAL ECOSYSTEMS

In a classic paper, Hutchinson (4) observed that in various
circumstances, including both vertebrate and invertebrate
forms, character displacement among sympatric species leads
to sequences in which each species is roughly twice as massive
as the next; i.e., linear dimensions as measured by bills or

mandibles in the ratio 1*2-1-4. Mac Arthur's more recent
and quantitative reviews (3) of such data point to there being
a limiting value to niche overlap in the natural world, corre-

sponding to diw in the range 1-2. Also pertinent is Simpson's
(11) review of the factors making for latitudinal and alti-
tudinal species diversity gradients among North American
mammals; it concludes that degree of niche overlap is not
an important contributing factor.
The work that seems to come closest to our one-dimensional

model is that of Terborgh, Diamond, and Beaver on various
guilds of birds in an assortment of habitats that have various
degrees of environmental stability. Even so, such compari-
sons with the theory are necessarily approximate, partly be-
cause our a (Eq. [3]) comes from utilization functions that
are not just percentage of time or of diet, but rather have
weighting terms for resource renewal (3, 7): all available in-
formation from nature contains unweighted utilizations.

Terborgh (12) has shown five species of tropical antbird,
segregating by foraging height, have mean heights separated

by one standard deviation; i.e., diw 1. Mac Arthur's analy-
sis (3) of Storer's data (13) on the food weight distribution
for three congeneric species of hawks also leads to d/w - 1.
Diamond's (14) extensive data on weights of tropical bird
congeners that sort out largely (but not wholly, so that d/w
should be smaller than our one-dimensional theory predicts)
by size differences leads to weight ratios around 1-6-2-3;
when Hespenheide's analysis (15) of the relation between
weight ratio and a is used, Diamond's results become a
O*8-0-9, i.e., d/w 0*6-1 *0. In the Sierra Nevada, Beaver
(personal communication) has shown that species packing in
a brushland bird community appears equal to that in a forest
foliage gleaning guild, although the microenvironment is
thought to be significantly more unvarying in the forest.
In brief, the basic conclusion that emerges in a nonobvious

but robust way from our mathematical model, namely that
there is a limit to niche overlap in the natural world and that
this limit is not significantly dependent on the degree of en-
vironmental fluctuation (unless it be severe, as in the arctic),
seems to be in harmony with such facts as are known about
real ecosystems.

APPENDIX

For large n, where "end effects" at the extremes of the resource
spectrum are unimportant, we may pretend that the resource
continuum is cyclic (so that the species labeled 1 adjoins that
labeled n), whereupon the competition matrix A of Eq. [4] is
slightly modified to become related to a class of matrices discussed
by Berlin and Kac (16). Using their approach, one can obtain
Eq. [5]. That this trick of imposing artificial cyclic boundary
conditions does not alter the eigenvalues for n >> 1 is a point made
clear in the literature on the physicists' Ising model, from which
comes Berlin and Kac's paper.
The series in Eq. [6] is identically equal to the contour integral

1 exp(zIlna)dz
2i sin (rz)

Here the contour C encloses all poles of the integrand up to
z = in, where the series has n terms. An n P, C is the circle
at infinity in the complex plane. Using the standard Jordan
contour, and ignoring correction terms of relative order exp
(-4rwh21/d2), which are thoroughly negligible for d/w < 3 or so,
we arrive neatly at Eq. [6].
At the other extreme, for n = 2 the eigenvalues of A are easily

found directly. For other finite values, such as n = 3, 4, we take
a meat axe and display Xli. as a numerical function of diw.
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