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Abstract

Understanding long-term coexistence of numerous competing species is a longstanding challenge in
ecology. Progress requires determining which processes and species differences are most important
for coexistence when multiple processes operate and species differ in many ways. Modern coexistence
theory (MCT), formalised by Chesson, holds out the promise of doing that, but empirical applications
remain scarce. We argue that MCT’s mathematical complexity and subtlety have obscured the sim-
plicity and power of its underlying ideas and hindered applications. We present a general computa-
tional approach that extends our previous solution for the storage effect to all of standard MCT’s
spatial and temporal coexistence mechanisms, and also process-defined mechanisms amenable to
direct study such as resource partitioning, indirect competition, and life history trade-offs. The main
components are a method to partition population growth rates into contributions from different
mechanisms and their interactions, and numerical calculations in which some mechanisms are
removed and others retained. We illustrate how our approach handles features that have not been
analysed in the standard framework through several case studies: competing diatom species under
fluctuating temperature, plant–soil feedbacks in grasslands, facilitation in a beach grass community,
and niche differences with independent effects on recruitment, survival and growth in sagebrush
steppe.
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INTRODUCTION

Understanding the indefinite coexistence of numerous compet-
ing species is a longstanding, central question in community
ecology (e.g. Hutchinson 1959, 1961; Grubb 1977; Shmida &
Ellner 1984; Hubbell 2001). This issue is particularly acute for
plants, which as Grubb (1977 p.107) noted “all need light,
carbon dioxide, water and the same mineral nutrients.” But it
also arises when co-occuring animal species compete for a
resource or habitat that is essential to all, such as coral reef
fish competing for territories (e.g. Sale 1979; Caley 1995;
Munday 2004; Volkov et al. 2007) and desert rodents compet-
ing for seeds (e.g. Kotler & Brown 1988; Brown 1989; Ziv
et al. 1993; Abu Baker & Brown 2014).
The solution Grubb proposed was the “regeneration niche”:

even if the trees are very similar, seeds and seedlings may be
very different. Moreover, species may regenerate at different
times (e.g. Usinowicz et al. 2017). But there are many other
hypotheses, all with theoretical and many with empirical sup-
port, including: predator limitation (Holt & Bonsall 2017),
specialist pathogens (Bagchi et al. 2014; Comita et al. 2014),
hydrological niches (Silvertown et al. 1999), resource ratio

differences (Dybzinski & Tilman 2007), spatial environmental
variation (Sears & Chesson 2007), and life history trade-offs
(L€onnberg & Eriksson 2013).
Rarely will only one of these processes be operating in a

real species-rich communities. Progress therefore requires
more than just identifying which processes that might con-
tribute to coexistence operate in a community. If we observe
that two warbler species forage in different parts of the tree,
is this crucial for coexistence, or irrelevant because neither
species is resource-limited? We need ways to determine which
differences and processes are most important when species dif-
fer in many ways and multiple processes operate.
Modern coexistence theory (MCT), formalised by Chesson

(1994) and Chesson (2000a), holds out the promise of doing
exactly that, by quantifying the contributions of different
mechanisms to species persistence. The over 2300 citations of
Chesson (2000b) – nearly half in the last 5 years – attest to
the conceptual importance of MCT (Web of Science, accessed
April 25 2018). However, empirical applications of MCT
remain scarce. One difficulty for empirical applications is that
applying MCT to a new study system often requires a case-
specific model, and deriving the necessary formulas for
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coexistence mechanisms in a new model entails a complex
mathematical analysis requiring a deep mathematical under-
standing of MCT. Annual plants with variable germination
are a classic example in MCT (Chesson 1994), but the first
empirical application in Angert et al. (2009) required a new
model, entailing a 17-page mathematical appendix to derive
the necessary formulas.
Another challenge is that restrictive assumptions are often used

to make the mathematics tractable, which can bias the results.
For example, Angert et al. (2009) assumed that all species are
equally affected by competition and that inter- and intra-specific
competition were equal in strength for all species. MCT’s
assumption of small environmental variance is often problematic
for empirical applications, because fluctuation-dependent mecha-
nisms only become important when environmental variation is
large. Mathematical results are also largely limited to unstruc-
tured models in which populations are described by total abun-
dance, while many empirical population studies use matrix or
integral projection models because there are substantial demo-
graphic differences between individuals of different ages or sizes.
Similarly, formulas for stabilising and equalising components of
niche differences have been cited and applied (e.g. Godoy &
Levine 2014, eqns A.4 and A.5) without realising that they are
specific to two-species communities with Lotka–Volterra compe-
tition. So while analytic results have yielded important insights,
empirical applications often require less restrictive assumptions.
Finally, MCT analyses coexistence in terms of a few concep-

tual “mechanisms” (Box 1). Instead, many ecologists might pre-
fer an analysis focusing on observed processes amenable to
direct experimental study, such as resource competition, indirect
competition via predators or pathogens, life history tradeoffs or
other system-specific processes. Theory with the flexibility to
analyse coexistence in terms of multiple species differences and
multiple mechanisms, in ways that readily adapt to various
study systems, would substantially broaden applicability.
We propose a broad extension of MCT that removes these

obstacles. Our previous paper (Ellner et al. 2016) provided a
partial solution for one mechanism, the storage effect. The
general approach here applies to all the standard MCT coexis-
tence mechanisms, to process-defined mechanisms such as
those listed above and any others thought to operate in a com-
munity. Our approach is an extension of current MCT, not a
replacement for it, designed for detailed analysis of particular
communities rather than general principles and insights.
In many situations, the dominant coexistence mechanisms

do not involve temporal fluctuations, so long-term data on
population responses to temporal variability is not necessary
for applying our approach. And with appropriate data, our
approach can also be applied to components of population
growth rate, such as survival or fecundity.
We begin by summarising the core ideas which form the con-

ceptual basis for MCT. For clarity we gloss over some subtleties
that become important in applications (a thorough, exact expo-
sition is provided by Barab�as et al. (2018)). We then introduce
our approach through a simple case study, coexistence main-
tained by variable temperature in an experimental community of
two diatom species. Next, we present our general approach, and
illustrate it through a series of empirical case studies that include
spatial coexistence mechanisms, facilitation, and structured

populations with stage-specific niche differences. In all of these
cases, we quantify coexistence mechanisms not covered by
MCT, though for the diatom case study, we also quantify the
traditional MCT mechanisms of storage effect and relative non-
linearity. R scripts to replicate all figures and tables are available
online (see DATA ACCESSIBILITY STATEMENT).

CORE IDEAS OF MCT

Modern coexistence theory posits that coexistence is stabilised
by processes that give any species, when rare, a population
growth rate advantage over other “resident” species that
remain at typical steady-state abundances. A species’ average
instantaneous population growth rate when rare is called its
invasion growth rate. A positive invasion growth rate buffers a
species against extinction, maintaining its persistence in the
community. If a species relies on different resources than its
competitors, or is limited by different enemies or different
environmental conditions, then its invasion growth rate may
be positive. All species persist and coexistence is stable if all
species have a positive invasion growth rate.
Modern coexistence theory quantifies coexistence mechanisms

by asking how they contribute to each invader’s population
growth rate advantage over resident species. It does this by com-
paring observed population growth rates with those that would
occur if one or more mechanisms were absent. How much would
invader and resident growth rates change if all enemies were
perfect generalists, or if the environment were constant?
The core approach in MCT is decompose and compare.

Decompose population growth rates into a sum of terms for
the effects of different factors, and then compare invader and
residents term-by-term. Considering invader-resident differ-
ences is essential because we want to say that a mechanism
stabilises coexistence of species A and species B if it gives
each, when it is rare, an advantage over the other. This can
happen two ways: the mechanism can help whichever species
is rare, or it can hurt whichever species is common. The inva-
der’s growth rate includes only the former; to capture both,
we need to make an invader–resident comparison. A resi-
dents’ average population growth rate is necessarily zero,
because they are neither increasing nor decreasing in the long
run. However the contribution of any particular mechanism
to that growth rate (e.g. the effect on its growth rate of preda-
tor switching or a variable environment) could be positive or
negative, depending on whether the mechanism helps or hurts.
Standard MCT uses Taylor-series expansions to decompose

and to evaluate invader-resident differences; in section SI.1,
we give a simple example to illustrate the procedures. The
resulting term-by-term differences in the growth rate decom-
position are then grouped into the canonical coexistence
mechanisms of standard MCT (Box 1).
In the invader–resident comparisons, it is essential that resi-

dents are not allowed to re-equilibrate when we ask, for exam-
ple, how does variance in temperature contribute to coexistence?
It seems natural to answer that question by doing a simulation
or experiment with temperature held constant. But constant
temperature helps or hurts each species, changing their abun-
dance, age structure, etc., thus altering the competition experi-
enced by each species. When we compare the outcomes with and
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without temperature variability, we would not know how much
of the different is due to temperature variability per se, and how
much is due to its cascading effects on competitive interactions,
age structure, etc. So instead, each term in the invader–resident
comparison is evaluated in the situation where all processes are
operating, and terms involving Var(Temp) quantify the direct
effect of variance in temperature. This point can be hard to
understand in the abstract, so in our case studies below we high-
light where it comes up.

HOW DOES FLUCTUATING TEMPERATURE MAINTAIN

DIATOM COEXISTENCE?

The most important question about our new approach is, can
it tell us something useful? Here, we use an empirical case

study to argue that it does, by quantifying the mechanisms
contributing to coexistence of two diatom species in experi-
ments by Descamps-Julien & Gonzalez (2005). We do this in
two ways, the first analogous to standard MCT for tempo-
rally fluctuating environments, the second based on the trait
differences between the species.
Descamps-Julien & Gonzalez (2005) demonstrated that two

diatom species, Cyclotella pseudostelligera and Fragilaria
crotonensis, competing for a single limiting resource (silicate),
could coexist in a chemostat with periodic variation in tem-
perature, but not at any constant temperature. Ellner et al.
(2016) showed that the storage effect was not sufficient to
explain the diatoms’ coexistence and therefore suggested that
relative nonlinearity of competition, the only other fluctua-
tion-dependent mechanism in standard MCT, was an essential

Box 1 Summary of the canonical coexistence mechanisms in MCT, following Barab�as et al. (2018).

In MCT for purely temporal variation (Chesson 1994), the population growth rate rj of species j is assumed to depend on the
environment, Ej, and competition, Cj. E and C are not direct measures of the physical environment and competition, but
parameters that represent population responses (e.g. C may be the proportional reduction in cell division rate due to resource
scarcity). Note that C includes all frequency- and density-dependent feedbacks. MCT then asks how differences among species
in the distributions and impacts of the Ejs and Cjs affect the long-run growth rate of each species in both resident and invader
states. Second-order Taylor expansion is used to partition the effects on growth rates of different moments of Ej and Cj, the
direct effects of Ej and Cj on growth rates. The invader-resident differences in each of the resulting terms are then grouped into
the following “mechanisms” for species i as invader:

• r0i, the sum of all terms that do not include density-dependent feedbacks.

• Dqi, the sum of all terms involving means of the Cj.

• DNi, the sum of all terms involving variances of the Cj.

• DIi, the sum of all terms involving Ej,Cj covariances.

r0i gives the invasion growth rate in the absence of direct density-dependent feedbacks. However, it includes Var(E) terms that
measure effects of environmental fluctuations on population growth rates, which we generally make a separate term in our anal-
yses. Whenever environment and competition both vary, there are two possible sources of nonlinear averaging, but only one of
them (competition) gets a stand-alone term in standard MCT.
Dqi represents all fluctuation-independent mechanisms, such as resource partitioning or species-specific enemies. In standard

MCT, the scaling factors qir used in invader–resident comparisons (see eqn 20) are chosen so that Dqi = 0.
DNi is called relative nonlinearity in competition. This fluctuation-dependent term reflects differences in the degree of nonlin-

earity of r in each species’ response to limiting competitive factors. If these differences are present, and the limiting factors fluc-
tuate, nonlinear averaging can benefit some species and hurt others.
DIi is called the storage effect because this mechanism’s importance was first recognised in models where gains during good

years were “stored” in a long-lasting life stage with low sensitivity to environment or competition. However, DI can make a pos-
itive contribution to coexistence whenever invaders have low environment-competition covariance (letting them increase rapidly
in good conditions) and they are buffered against equally rapid decrease in bad conditions.
The canonical growth-rate decomposition for purely temporal variability is then

�ri ¼ r0i þ DNi þ DIi:

With spatial rather than temporal variability, there is an additional term (fitness-density spatial covariance) and the spatial stor-
age effect involves spatial rather than temporal covariance of environment and competition.
Our growth-rate decompositions differ in several ways. Because we do not use Taylor approximations, our decompositions

usually include higher-order interaction terms. Where standard MCT reduces the number of terms by grouping and weighting,
we decompose finely. We also prefer to work directly with the measurable state variables and environmental covariates that
characterise the community (e.g. resource concentration and temperature) rather than the effects of resource limitation and tem-
perature on population growth rates. However, users who prefer can express population growth rates as functions of E and C
variables as they would be defined in standard MCT, and do decompositions using our methods that align more closely with
the canonical mechanisms. We discuss these options for our diatoms case study in section SI.3.
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coexistence mechanism. We were wrong. We forgot about
nonlinear averaging of environmental fluctuations, which does
not get a stand-alone term in standard MCT.
Our model, closely following Descamps-Julien & Gonzalez

(2005), is a two-species chemostat with some parameters
depending on temperature h,

dS

dt
¼ DðS0 � SÞ �Q1ðhÞx1 V1ðhÞS

K1 þ S
�Q2ðhÞx2 V2ðhÞS

K2 þ S

dxj
dt

¼ xj
VjðhÞS
Kj þ S

�Dxj; j ¼ 1; 2:

ð1Þ

Here S is extracellular silicate concentration in the chemostat,
x1 and x2 are population densities of Fragilaria and Cyclo-
tella, respectively, S0 is silicate concentration in the inflow,
and D is dilution (outflow) rate. Temperature varies periodi-
cally,

hðtÞ ¼ h0 þ a sinð2pt=PÞ: ð2Þ
with mean h0, amplitude a, period P. Coexistence was
observed experimentally with h0 = 18�C, a = 6�C, P = 60d.
Functions specifying how Qj (silicate per cell) and Vj (maxi-

mum cell division rate) depend on temperature were estimated
from batch experiments (Fig. 1). As half-saturation constants
Kj are nearly constant over the range of temperatures in the
experiments (18–24�C), we model them as constant:
K1 = 0.25 lM (Fragilaria), K2 = 0.14 lM (Cyclotella). At tem-
peratures of 18�C or lower where both species have similar V
values, Cyclotella has a significant advantage (smaller K, hence
faster nutrient uptake) but at high temperatures Fragilaria wins
because its V remains high while Cyclotella’s falls precipitously.
In the model, species j has silicate- and temperature-depen-

dent instantaneous population growth rate

rjðh;SÞ ¼ VjðhÞS
Kj þ S

�D: ð3Þ

Our first analysis begins by partitioning the long-term average
population growth rate �r of each species, in both its invader
and resident states, into: the growth rate that would occur

without variance in silicate or temperature; the main effects of
variance in silicate and in temperature; the interaction
between the two variances; and effects of covariance between
silicate and temperature.
To do the analysis for species 1, values of S(t) and h(t) are

recorded from a long simulation of the model with species 1
invading (absent, or kept very rare at all times), and species 2
resident at steady state, using empirically estimated parameters
under the experimental conditions. The same analysis could be
done with data from a long experiment. Values need to be
recorded at times tk (k = 1, 2, ⋯, m) spaced closely enough to
capture all relevant population dynamics, and for long enough
to accurately estimate average growth rate; in practice this
means that doubling the simulation/experiment duration or
doubling the observation frequency has no meaningful effects.
Denote the average values of silicate and temperature across

the times tk by �S and �h, respectively. The average population
growth rates of each species are then estimated by time-averaging,

�rj ¼ 1

m

Xm
k¼ 1

rj hðtkÞ;SðtkÞð Þ; j ¼ 1; 2: ð4Þ

A population grows if �r [ 0.
The growth rate partitioning is depicted in Fig. 2, and for-

mulas for each term are in Table 1. To compute the main
effect of silicate variability, for each species define

e0j ¼ rjð�h; �SÞ
eSj ðSÞ ¼ rjð�h;SÞ � e0j :

ð5Þ

e0j is the population growth rate with temperature and silicate
constant at their means, while eSj is the main effect of silicate
concentration varying around its mean, relative to the “null”
conditions ð�h; �SÞ (Means are a natural variance-free null, but
other choices are possible, as we explain below). Similarly the
main effect of temperature variability is

ehj ðhÞ ¼ rjðh; �SÞ � e0j ð6Þ

The effect of having variability in both S and h generally will
not equal the sum of the main effects. The difference between
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Figure 1 Species-specific temperature responses of the parameters (a) V, and (b) Q, governing nutrient uptake and conversion efficiency. Points (closed

circles: Fragilaria, open circles: Cyclotella) are parameter estimates derived from 9-day single-species batch experiments on each species at a constant

temperature (Table 1 of Descamps-Julien & Gonzalez (2005)). The plotted lines and curves were used to simulate the model with continuously varying

temperature. Q for Cyclotella could not be estimated at 24 ∘C because of its very low growth rate in the batch experiments. Because Cyclotella’s growth at

24 ∘C was much better in chemostats than in batch experiments, our V function for Cyclotella (dashed line in panel a) uses a higher value of V at 24 ∘C,

chosen so that the model matches better the average abundance of Cyclotella in chemostat experiments; but even without this modification the model

predicts coexistence in the variable temperature experiment. Figure generated by PlotForcedChemo.R, ForcedChemoSubs.R
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the actual effect and the sum of main effects is the interaction
term,

ehSj ðh;SÞ ¼ rjðh;SÞ � e0j þ eSj þ ehj

h i
: ð7Þ

Re-arranging (7),

rjðh;SÞ ¼ e0j þ eSj ðSÞ þ ehj ðhÞ þ ehSj ðh;SÞ: ð8Þ
Averaging both sides of (8) as in eqn (4) gives a partition of
average population growth rate into the variance-free growth
rate, the main effects of variability in S and in h, and the
interaction between variability in S and in h:

�rj ¼ e0j þ �eSj þ �ehj þ �ehSj : ð9Þ

Following analytic MCT, we further decompose �ehSj into
the effect of variance per se in h and S, and the effect of
covariance between them. To accomplish this, let �eðh#SÞ

j

denote the expectation of ɛhS (eqn 7) when both have their
true univariate distributions but the covariance between them
is removed. And, let �eðhSÞj be the effect of restoring the
covariance

(a)

(b)

Figure 2 (a) Conceptual representation of how population growth rate is partitioned for any one species, as invader or resident, in the diatoms case study. ɛ0

(black, top left) is growth rate when temperature h and silicate S are held constant at their average values. �eS (purple, top right) is the change in growth rate �r

when silicate varies but temperature remains constant at its average value, and �eh (cyan, bottom left) is the change in growth rate when temperature varies but

silicate remains constant at its average value. The further change in growth rate when both vary (bottom right), beyond the combined effect of each varying on

its own, is partitioned into the effect of uncorrelated joint variation �eðh#SÞ (dark blue) and the additional effect of correlations between silicate and temperature
�eðhSÞ (red); �rðh#;S#Þ is the long-run growth rate when h and S vary in an uncorrelated way, given by the first term in the formula for �eðh#SÞ

j in (10). For clarity,

this figure is drawn for a hypothetical case where all terms in the partitioning are positive. (b) Conceptual representation of how a term-by-term comparison of

invader species i and resident species r defines the contribution D of a coexistence mechanism to invader growth rate. This illustrates the case where there is only

one resident species. Figure generated by AwesomeSchematic.R and AwesomeSchematicPart2.R
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�eðhSÞj ¼ �ehSj � �eðh#SÞ
j : ð10Þ

Ellner et al. (2016) evaluated �eðh#SÞ
j by temporal randomisa-

tion to remove correlations; the formulas in Table 1 are the
expected value of that process (i.e. the average across infi-
nitely many randomisations). With few main effects the for-
mulas are computationally more efficient, but with many,
randomisation may be preferable.
Combining eqns (9) and (10) gives the full decomposition

�rj ¼ e0j þ �eSj þ �ehj þ �eðh#SÞ
j þ �eðhSÞj : ð11Þ

We call (11) an E-decomposition because it decomposes popu-
lation growth rate into contributions from different aspects of
the species’ environment.
Next, we compute invader–resident differences by applying

the formulas in Table 1 to both species, using S(t) and h(t)
values from simulations (or experiments) with species 1 invad-
ing and species 2 as the resident. Let �eknj denote a term

computed for species k when species j is the invader, and Dj

the invader-resident difference between corresponding terms
when species j is the invader. For example (with j = 1 invad-
ing, k = 2 resident)

DS
1 ¼ �eS1n1 � �eS2n1 and Dðh#SÞ

1 ¼ �eðh#SÞ
1n1 � �eðh#SÞ

2n1 : ð12Þ

Being a resident at steady state, species 2 has �r2 ¼ 0. We
therefore have

�r1 ¼ �r1 � �r2 ¼ D0
1 þ DS

1 þ Dh
1 þ Dðh#SÞ

1 þ DðhSÞ
1 : ð13Þ

The growth rate e01 ¼ r1ð�h; �SÞ still reflects the temperature fluc-
tuations during the experiment, because the resident’s
response to temperature affects �S. An alternative, completely
fluctuation-independent growth rate is e�1 ¼ r1ð�h; �S�Þ, where
�S� is the mean S in an experiment or simulation at constant
temperature �h with species 2 absent. Then e01 ¼ e�1 þ e01 in
(11), where e01 ¼ e01 � e�1 is the effect of fluctuation-driven
changes in mean S. The term D0

1 in (13) is then replaced by
D�
1 þ D0

1.

Table 1 Calculation formulas for the diatoms case study

Term Formula Meaning

�h 1
m

Pm
k¼1

hðtkÞ Mean temperature

�S 1
m

Pm
k¼1

SðtkÞ Mean silicate, varying temperature experiment

or simulation

�S� 1
m

Pm
k¼1

S�ðtkÞ Mean silicate, constant temperature

experiment or simulation

e0j ; e
�
j rjð �S; �hÞ; rjð �S�; �hÞ Population growth rates at mean temperature and silicate

e0j e0j � e�j Effect of fluctuation-driven change in mean S

�eSj
1
m

Pm
k¼1

rjð�h;SðtkÞÞ � e0j Main effect of variation in silicate

�ehj
1
m

Pm
k¼1

rjðhðtkÞ; �SÞ � e0j Main effect of variation in temperature

�ehSj
1
m

Pm
k¼1

rjðhðtkÞ;SðtkÞÞ � ½e0j þ �eSj þ �ehj � Interaction of silicate and temperature variation

�eðh#SÞ
j

1
m2

Pm
k¼1

Pm
i¼1

rjðhðtkÞ;SðtiÞÞ � ½e0j þ �eSj þ �ehj � Independent variation component of�ehSj

�eðhSÞj �ehSj � �eðh#SÞ
j Covariance component of �ehSj

r(V,K,S) VS
KþS �D Instantaneous population growth rate as a function

of traits and silicate concentration

e0j
1
m

Pm
k¼1

rð �VðhðtkÞÞ; �K;SðtkÞÞ Baseline (equal-traits) mean population growth rate

�eVj
1
m

Pm
k¼1

rðVjðhðtkÞÞ; �K;SðtkÞÞ � e0j Main effect of differences in V(h)

�eKj
1
m

Pm
k¼1

rð �VðhðtkÞÞ;Kj;SðtkÞÞ � e0j Main effect of differences in K(h)

�eVKj
1
m

Pm
k¼1

rðVjðhðtkÞÞ;Kj;SðtkÞÞ � ½e0j þ �eVj þ �eKj � Interaction of V and K differences

S(tk) are values from a model run or experiment with time-varying temperature, S*(tk) from a run or experiment with constant temperature �h. In these

experiments S*(tk) is constant so there is no need to time-average, but in other experiments that might not be true so we give the general formulas. j is the

species index in all formulas. Formulas above the dashed line are the environment-centric E decomposition; formulas below the dashed line are the trait-

centered T decomposition. To compute the invasion growth rate components Di for species i, the formulas are applied to both species (j = 1,2) using data

or model simulations with species j as the invader and the other species resident, and each Dj is the difference between corresponding �ej for the invader and

the resident.
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Like the analytic formulas in standard MCT, eqn (13)
expresses species 1’s invasion growth rate as a sum of contri-
butions from different aspects of the biotic and abiotic envi-
ronments. (Readers familiar with MCT may ask, where are
the scaling factors? We answer that question below, but for
this case study it doesn’t matter because they are all very near
1 (Ellner et al. 2016)). D0

1 is the difference in population
growth rates at mean temperature and silicate. DS

1 is the dif-
ference in the main effects of silicate variability, between spe-
cies 1 as invader and species 2 as resident. This difference
results from the nonlinear response of cell division rate to sili-
cate concentration so we call it relative nonlinearity in silicate.
Similarly, Dh

1 measures relative nonlinearity in temperature.
We call DðhSÞ

1 the storage effect because, as in standard MCT,
storage effect is the contribution to population growth rate of
covariance between the environment and competitive factors
determining r (Ellner et al. 2016).
However, inexact correspondence with MCT is unavoidable.

MCT terms such as “storage effect” or “relative nolinearity”
refer to terms in small variance approximations that we do
not use. Similarly, our variance-interaction terms such as
�eðh#SÞ are absent in standard MCT, because they come from
the third- and higher-order terms that are dropped from
MCT’s Taylor series approximations.
There are also avoidable differences reflecting choices in

applying our method. We prefer to decompose in terms of
environmental drivers, here temperature and silicate, whereas
standard MCT uses an environment-dependent parameter E
such as V(h), and a competition parameter C, such as the
effect of silicate limitation on cell division rate. In section
SI.3, we present an alternate analysis of this case study using
E and C parameters. Also, standard MCT lumps terms that
we keep separate. Specifically, the baseline growth rate (r0 or
k0) in MCT that is described as representing “variation-inde-
pendent coexistence mechanisms” (Chesson 2000a, p.224)
and “mechanisms operating on a shorter time-scale than the
unit of time considered explicitly in the model” (Chesson
1994, p. 249) includes the direct effects of fluctuations in E
that are not mediated through variance in C or E,C covari-
ance. Failure to appreciate that led to our incorrect conclu-
sion (Ellner et al. 2016) that relative nonlinearity of
competition must be important in this community.

Results from our E-decomposition are given in Table 2. For
each species, the growth rate contributions (Ds) add up (by
definition) to equal the invasion growth rates. A negative
invasion growth rate would imply that the species could not
invade the other. We can therefore assay the importance of
each mechanism for coexistence by asking what the invasion
growth rate would become if the corresponding contribution
is set to zero. The stabilising component of each mechanism is
defined to be its average contribution across species, and the
equalising components are each species’ deviation from the
average (as in Chesson (2003), but we set the scaling coeffi-
cients to 1). Thus, a component is stabilising (in this sense)
simply if its average contribution to the invasion growth rates
of all species is positive. (Contrary to intuition, by this defini-
tion a mechanism can be stabilising even if it does not benefit
each species when rare. Despite this concern, we follow cur-
rent usage rather than inventing new terms).
The results in Table 2 show that storage effect, relative non-

linearity in temperature, fluctuation-driven changes in mean
silicate, and the fluctuation-free null growth rate are all stabil-
ising, i.e. they all increase average invasion growth rate.
Cyclotella has positive invasion growth rate because its fluctu-
ation-free growth rate is large enough to offset the negative
contribution from relative nonlinearity in temperature. Fragi-
laria’s positive invasion growth rate is crucially dependent on
the positive contribution from relative nonlinearity in temper-
ature, without which its invasion growth rate would become
negative. The two largest fluctuation-dependent terms for
Fragilaria – relative nonlinearity in temperature, and the inter-
action between temperature and silicate variability – are
absent from standard MCT for the reasons explained above.
The E-decomposition identifies how different features of the

species’ biotic and abiotic environments promote or impede
coexistence, given how species respond to their environment.
Using the same approach we can additionally do a species-
centric decomposition to provide complementary information
about which attributes of species promote or impede coexis-
tence under the abiotic and biotic conditions that they experi-
ence. We call this a T-decomposition, T standing for “traits.”
Given the environment (S(t),h(t)), population growth rates of

Fragilaria and Cyclotella differ because they have different half-
saturation constants Kj (which are constant over the experiment’s

Table 2 E-decomposition of coexistence mechanisms for experiments with two diatom species (Descamps-Julien & Gonzalez 2005)

Growth rate contributions

Fragilaria

rinv = 0.061 d�1
Cyclotella

rinv = 0.007 d�1
Stabilising

component

Fluctuation-free growth rate, D* �0.031 0.041 0.005

Fluctuation-driven change in mean S, D0 0.020 0.001 0.011

Relative nonlinearity in temperature h, Dh 0.092 �0.037 0.028

Relative nonlinearity in silicate S, DS �0.014 �0.001 �0.007

h,S variance interaction, D(h#S) �0.045 0.000 �0.022

h,S covariance (storage effect), D(hS) 0.038 0.003 0.021

Values were calculated from the last 1200 days of a 3600 day simulation, recording 10 values each day. Growth rate contributions (D) are invader-resident

pairwise differences in the decompositions of invader and resident growth rates; for each species, the sum of all Ds equals the invasion growth rate rinv.

Recall that D*+D
0
=D0, as explained following eqn (13). The stabilising component of each is simply the average of the first two numerical columns; equalis-

ing components (not tabulated) are the deviations between each species’ D and that average. The storage effect estimates here differ slightly from Ellner

et al. (2016) because here we are not using the scaling factors in invader–resident comparisons. Values calculated by ForcedChemo_Func_Cov-
ar.R, and ForcedChemoSubs.R
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temperature range) and different temperature-dependent maxi-
mum division rates Vj(h), which determine their response to sili-
cate concentration. We therefore decompose the invader and
resident population growth rates into the main effects of differ-
ences in K and in V, and their interaction, relative to the “null”
growth rate that results if both species are given the average
responses �K ¼ 0:5ðK1 þ K2Þ; �VðhÞ ¼ 0:5ðV1ðhÞ þ V2ðhÞÞ. For-
mulas for the terms are in Table 1; we again use D to denote a dif-
ference between invader and resident terms.
The main effects (Table 3) reiterate the biology: Cyclotella

benefits from its lower K and is harmed by its lower V at high
temperatures, and the reverse is true for Fragilaria. Both of
these are stabilising. More unexpected is the size of the inter-
action terms. Although they are not necessary for coexistence,
the invasion growth rates would be quite different without
them (nearly an order of magnitude larger for Cyclotella).
This T-decomposition could also be applied separately to each

component in the E-decomposition, to show which traits gener-
ate each growth rate component, but we do not pursue that here.

GENERAL THEORY

General functional decomposition

The E- and T-decompositions in our diatoms case study
(Table 1) are examples of a general functional decomposition
applicable to any collection of two or more processes, mecha-
nisms, or species differences affecting population growth rate.
The first step is to select the features of interest. A “fea-

ture” is some aspect of reality that affects population growth
rates. The features in our diatom E-decomposition were vari-
ance in S and h and covariance between them. The features in
our diatom T-decomposition were interspecific differences in
V and K. In Angert et al. (2009) the features were temporal
variation in seed germination fraction, temporal variation in
seedling growth and survival, and temporal variation in com-
petition. Features in the case studies below include the pres-
ence of plant–soil feedbacks, and facilitation of other species
by each member of a community.
The decomposition consists of breaking up the long-run

growth rate of each species (as invader and then as resident)
into (0) a null growth rate in the absence of all selected fea-
tures; (1) a set of “main effect” terms representing the effect of
adding one and only one feature; (2) a set of two-way interac-
tion terms representing the effect of adding each possible pair

of features, above and beyond the sum of their main effects;
(3) and so on, until all features are represented. The null term
can contribute to coexistence when it includes the stabilising
effects of features that were not selected for the decomposition.
Term-by-term invader–resident comparisons then measure the
contribution of each growth rate component to invasion
growth rates.
In section SI.4, we give a mathematical definition of the

decomposition; here we explain it by describing general E-
and T-decompositions of population growth rate. We then
discuss invader–resident comparisons, and define stabilising
and equalising components.

General E-decomposition

An E-decomposition follows standard MCT in focusing on
coexistence maintained by environmental variability. The fea-
tures are variances and covariances of biotic or abiotic vari-
ables affecting population growth rates. For example, if
population growth rate r is a function of environmental vari-
ables X, Y, and Z, we write

rðX;Y;ZÞ ¼ e0 þ eX þ eY þ eZ þ eXY þ eYZ þ eXZ þ eXYZ:

ð14Þ
The null growth rate e0 ¼ rð �X; �Y; �ZÞ is the growth rate when
all variables or traits are set to their averages. Terms with
superscripts represent the marginal effects of letting all super-
scripted variables vary while fixing all other variables at their
average values — they are the difference between long-run
growth with all superscripted variables free, and the sum of
all lower-order terms (i.e. terms where fewer variables are free
to vary). For example,

eX ¼ rðX; �Y; �ZÞ � e0

eXY ¼ rðX;Y; �ZÞ � ½eX þ eY þ e0�
eXYZ ¼ rðX;Y;ZÞ � ½eXY þ eYZ þ eXZ þ eX þ eY þ eZ þ e0�:

ð15Þ
Taking expectations of all terms in (14) and (15), each r becomes
�r and each ɛ becomes �e. Mean population growth rate is thus
decomposed into the main effects of variation in each argument,
and interactions among variation in different arguments.
It is important to recall that each ɛ only includes the direct

effects of variation in superscripted variables; for example
�rðX;Y; �ZÞ is computed using the distribution of X and Y, and

Table 3 T-decomposition of coexistence mechanisms for experiments with two diatom species (Descamps-Julien & Gonzalez, 2005), using the formulas in

Table 1

Growth rate contributions

Fragilaria

rinv = 0.061 d�1
Cyclotella

rinv = 0.007 d�1
Stabilising

component

Difference in K, DK �0.057 0.079 0.011

Difference in V, DV 0.079 �0.017 0.031

Interaction, DVK 0.039 �0.054 �0.007

All species necessarily have the same null growth rate so the corresponding invader–resident comparison D0 is zero. The stabilising component of each

growth rate contribution is the average of the first two numerical columns; equalising components (not tabulated) are the deviations between each species’

D and that average. Tabulated values are calculated in ForcedChemo_TraitDecomp.R and ForcedChemoSubs.R.
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the value of �Z that occurs when Z is fluctuating. Similarly, in
a structured population model, presence versus absence of
fluctuations in any variable will affect population structures,
but terms for the effect of those fluctuations would be evalu-
ated using population growth rates computed with the popu-
lation structures observed under natural conditions, as in our
Structured populations example below. If the effect of changes
in population structure is a feature of interest, it can be
included in the decomposition, producing terms for its main
effect, interactions, and so on. Different decisions about which
features are of interest lead to different decompositions.
Next, we can do a covariance decomposition of any �e term

with multiple free variables, breaking it up into the effects of
their variation per se and effects of covariances among them.
Our notation convention is that a superscript with parenthe-
ses is a term in this secondary decomposition, and a # sym-
bol separates subsets of variables that have within-subset
covariation preserved while variables separated by one or
more # symbols vary independently. For example, if r is a
function of X, Y, Z, W, and U, then �eðXY#ZWÞ is the expec-
tation of r with U set at its average value, X and Y covary-
ing, Z and W covarying, and X and Y independent of Z
and W, minus all terms with the same non-constant variables
but fewer covariances.
In the diatoms example, we had �eXY ¼ �eðX#YÞ þ �eðXYÞ.

Higher-order terms are broken down similarly with higher-
order covariance terms representing the additional affect of
the correlations present, beyond the combined effect of all
possible lower-order covariance terms. For example,

�eðXYZÞ ¼ �eXYZ � ½�eðXY#ZÞ þ �eðX#YZÞ þ �eðXZ#YÞ þ �eðX#Z#YÞ�:
ð16Þ

and �eðXY#ZÞ is the effect on population growth rate of restor-
ing the observed covariance between X and Y, with Z inde-
pendent of both, relative to the growth rate when X,Y and Z
are mutually independent.
Researchers may wish to decompose only some terms into

effects of independent variation and covariation. Alterna-
tively, covariance between two variables could be separated
into several components (e.g. rainfall-competition covariance
for small individuals and for large individuals), leading to a
finer decomposition of the contribution of covariance to pop-
ulation growth.

General T-decomposition

The features in a T-decomposition are attributes that differ
among species. The null growth rate is the population growth
rate that results from giving all species the across-species aver-
age value for each trait; this depends on the scale of measure-
ment, e.g. length versus log length. The main effects are
restoring one trait to its true value in all species. Let Θ denote
the vector of parameters or variables characterising the biotic
and abiotic environment, possibly time-varying. In the dia-
toms example, Θ is (S(t),h(t)) during the experiment. Then if
the traits are X1,X2,⋯,Xn the null growth rate is

e0 ¼ EHrð �X1; �X2; � � � ; �Xn;HÞ ð17Þ

the hypothetical long-term growth rate when each species has
the average value for all traits, but the environment (abiotic
and biotic) varying as it actually did with observed traits. The
main effect for trait J is

eJ ¼ EHrð �X1; � � � ;XJ; � � � ; �Xn;HÞ � e0: ð18Þ
The interaction between traits J and K is

eJK ¼ EHrð �X1; � � � ;XJ; � � � ;XK; � � � ; �Xn;HÞ � ½eJ þ eK þ e0�
ð19Þ

and so on, exactly as in an E-decomposition. Invader-resident
term-by-term differences quantify the contribution of each
term to the invading species’ advantage when rare. Note, we
again measure only the direct effects of each trait by evaluat-
ing terms using Θ taken from data or simulations where all
traits have their observed values.
Alternatively, the decomposition can include (as additional

features) indirect effects mediated by species’ effect on their
environment. In SI.9.4 we illustrate this alternative, with indi-
rect effects mediated by population structure as the additional
feature.
Analogous to covariance decomposition, a step from aver-

age to true trait values could be broken into two steps, by
considering the intermediate situation where traits vary
among species without trait-trait correlations. We do not
pursue this refinement because many terms will often be zero
(see SI.6.)

Resident weightings in invader–resident comparisons

When comparing invader and resident population growth
rates, we generally weight all residents equally. Instead, or
additionally, one can ask how an invader gains an advantage
over each resident individually. Or, to recover the canonical
MCT mechanisms, residents can be weighted by the scaling
factors qir (Chesson 1994, 2000a). These alternative resident
weightings are as follows:

Di;¼ ¼ �eini � 1

S � 1

X
r 6¼i

�erni Equal weight

Di;k ¼ �eini � �ekni; k 6¼ i Pairwise with resident species k

Di;q ¼ �eini �
X
r 6¼i

qir�erni Scaling factors

ð20Þ
where S is the total number of species. The three weightings
are three different but equally valid ways of breaking one
number (invasion growth rate of species i) into a sum of inter-
pretable components. The same �eini and �erni values are used in
all weightings, calculated from data or simulations where spe-
cies i is invading a community with all other species resident.
Thus, a pairwise comparison between invader A and resident
B will include effects of the other residents C, D, E, etc.
In many models, the scaling factors qir do not exist (for

example, when there are more limiting factors than species,
Barab�as et al. (2018)). In other cases, they are not unique
(Ellner et al. 2016), or they can become negative (Snyder et al.
2005, p. E92), turning an invader-resident “difference” into a
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weighted sum of invader and resident growth rates. Ellner
et al. (2016) discuss these conceptual difficulties in detail. And
in experimental practice, numerical values of the scaling fac-
tors may be very sensitive to choices that should be immate-
rial in the analytic theory (Letten et al. 2018). Because of
these issues, we generally avoid use of the scaling factors.

Stabilising and equalising components

We define the stabilising component of any mechanism (i.e. of
any D term) to be the average of that term across all species
as invader. The equalising component of a mechanism is, for
each species, its deviation from the average.
Chesson (2000b, 2003) uses similar definitions but first

scales population growth rates such that the scaled invasion
growth rates sum to zero in the absence of the coexistence
mechanisms considered, which eliminates any stabilising com-
ponent apart from those mechanisms. While this is aestheti-
cally pleasing, scaling coefficients with this property are only
certain to exist when species compete for a single limiting

factor (Barab�as et al. 2018, section 2.7), so we use unscaled
population growth rates. The stabilising component of the
null term, if it is non-zero, reflects the stabilising component
of all features not included in the chosen decomposition.

APPLICATIONS

Spatial coexistence mechanisms in the Chesson (2000) model

To highlight our approach’s generality, we show how it can
be used to analyze coexistence in the Chesson (2000a) model
for environments with purely spatial variation. Let nj,x denote
abundance of species j in patch x = 1,2,⋯,Q. The expected
contribution of patch x individuals to the global population
at time t + 1 is given by

kjðEj;xðtÞ;Cj;xðtÞÞnj;xðtÞ; ð21Þ

where Ej,x and Cj,x are the environment and competition fac-
tors affecting species j in patch x. Apart from space the

Table 4 Calculation formulas for analysis of spatial coexistence mechanisms

Term Formula Meaning

�NjðtÞ Q�1
PQ
x¼1

nj;xðtÞ Average within-patch abundance

mj,x(t) nj;xðtÞ= �NjðtÞ Relative abundance in patch x

kj,x(t) kj(Ej,x(t),Cj,x(t)) Per-capita fitness of patch x individuals

�mjðtÞ; �kjðtÞ Q�1
PQ
x¼1

mj;xðtÞ; Q�1
PQ
x¼1

kj;xðtÞ Spatial averages of m,k

�EjðtÞ; �CjðtÞ Q�1
PQ
x¼1

Ej;xðtÞ; Q�1
PQ
x¼1

Cj;xðtÞ Average environment and competition factors

Covx(mj(t),kj(t))
�
Q�1

PQ
x¼1

mj;xðtÞkj;xðtÞÞ
�� �mjðtÞ�kjðtÞ Fitness-density covariance

e0j ðtÞ kjð �EjðtÞ; �CjðtÞÞ � 1 Baseline (zero variance) population growth rate

�eCj ðtÞ ½Q�1
PQ
x¼1

kjð �EjðtÞ;Cj;xðtÞÞ � 1� � e0j ðtÞ Main effect of spatial variance in C

�eEj ðtÞ ½Q�1
PQ
x¼1

kjðEj;xðtÞ; �CjðtÞÞ � 1� � e0j ðtÞ Main effect of spatial variance in E

�eECj ½�kjðtÞ � 1� � �e0j þ �eEj þ �eCj
�

Interaction of E and C variation

�eðE#CÞ
j

�
Q�2

PQ
x¼1

PQ
y¼1

kjðEj;xðtÞ;Cj;yðtÞÞ � 1
�� �e0j þ �eEj þ �eCj

�
Independent variation component of �eECj

�eðECÞj �eECj � �eðE#CÞ
j Covariance variance component of �eECj

~kjðtÞ (total pop. at t + 1)/(total pop. at t) Population growth rate

�e0j ðtÞ ~kjðF ¼ 0; cii ¼ 1ÞðtÞ � 1 Baseline growth rate

�ecj ðtÞ ½~kjðF ¼ 0; cii ¼ 0:5ÞðtÞ � 1� � e0j ðtÞ Main effect of plant–soil feedbacks c

�eFj ðtÞ ½~kjðF 6¼ 0; cii ¼ 1ÞðtÞ � 1� � e0j ðtÞ Main effect of local retention F

�eFcj ðtÞ ½~kjðF 6¼ 0; cii ¼ 0:5ÞðtÞ � 1� � ½ecj ðtÞ þ �eFj ðtÞ þ �e0j ðtÞ� Interaction of c and F

j is the species index in all formulas. Formulas above the dashed line are a spatial E-decomposition for the Chesson (2000a) model with purely spatial vari-

ation. Formulas below the dashed line are a T-decomposition for the Petermann et al. (2008) model. The argument cii = 1 means that all entries of c equal

1 (no plant–soil feedbacks), while cii = 0.5 means that all diagonal entries of c equal 0.5 (negative plant–soil feedbacks). Similarly, F is either zero for all

species (no local retention) or has the same positive value for all species. Formulas for the various ~kjðtÞ are given in section SI.8. All formulas here are for

spatial “snapshot” data at one time t, or one observation of population growth. If data at multiple times are available, each ɛ or �e term is calculated for

each time point, then averaged over time.
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population is unstructured, so kj includes new recruits and
survivors. The function kj is the same for all patches; intrinsic
patch differences are incorporated into Ej,x and Cj,x. For
example, Cj,x could be population nj,x divided by local carry-
ing capacity Kj,x.
Chesson (2000a) showed that (with notation as defined in

Table 4) the total population of species j has annual growth rate

~kjðtÞ ¼ �kjðtÞ þ Covx
�
mjðtÞ; kjðtÞ

�
; ð22Þ

the sum of average patch-specific fitness and fitness-density
covariance.
A growing population is represented by ~k [ 1. To parallel

the continuous-time case we therefore make the response vari-
able ~k� 1 as in Chesson (2000a). We can then decompose
�kjðtÞ � 1 using the two-factor case of our general E-decompo-
sition. The result is

~kjðtÞ � 1 ¼ e0j ðtÞ þ �eEj ðtÞ þ �eCj ðtÞ þ �eðE#CÞ
j ðtÞ þ �eðECÞj ðtÞ

þ CovxðmjðtÞ; kjðtÞÞ: ð23Þ
With �e here denoting a spatial average at a particular time.
Formulas for all terms are in Table 4.
As in the non-spatial case, mechanism contributions (Ds)

are the difference between corresponding �e terms for invader

and resident species: e.g. DC
j ¼ �eCjnj � 1

S�1

P
k6¼j �e

C
knj. The inva-

der-resident difference in Covx terms is growth-density covari-
ance and the difference in ɛ(EC) terms corresponds to the
spatial storage effect as defined by Chesson (2000a). The term
DC aligns closely with spatial relative nonlinearity of competi-
tion, and DE is spatial relative nonlinearity in environment
(absent from the standard decomposition).

Case study: Janzen-Connell effect in grasslands

Petermann et al. (2008) developed and parameterised experi-
mentally a spatial model for species coexistence in grasslands
through local plant–soil feedbacks mediated by soil microbes.
The landscape consists of sites, each containing a single
legume, grass, or forb individual, which have a species-specific
death rate. Individuals produce seeds each year, which are
retained locally (in the parent’s site) with probability F (local
retention fraction), and otherwise disperse at random across
all sites. At sites becoming open through death of the occu-
pant, there is lottery competition among seeds, with a twist: a
seed’s probability of capturing the site depends not only on
the identity of the seed and competing seeds, but on the iden-
tity of the adult previously occupying the site. Because of per-
sisting species-specific pathogens, a seed is less likely to win a
site previously held by a conspecific adult. Specifically, the
probability that a seed of type i will capture a site formerly
occupied by an adult of type j is cijsi/∑kckjsk, where sk is the
number of seeds of type k in a site. Based on experiments,
Petermann et al. modelled the soil pathogen effect by assum-
ing cii = 0.5, ci 6¼j = 1.
In individual-based simulations of the model, Petermann

et al. (2008) observed long-term coexistence of all species, so
long as the local retention fraction F is not too high. To bet-
ter understand this result in terms of underlying mechanisms,

we used a decomposition in which the selected features are
the presence of local retention (F > 0 vs. F = 0) and plant–soil
feedback (cii = 0.5 vs. cii = 1). We present here simulation-
based results; the decomposition can also be done analytically
(section SI.8).
Table 4 gives the formulas for decomposing population

growth rates; invader–resident comparisons Dj used equal
weighting of residents. When estimating the ~kjðtÞ, we kept the
resident population totals at the steady-state values they
assume in the presence of both local seed retention and plant–
soil feedbacks (estimated by running a long simulation for
each pair of species as residents, with no invader). Each of the
~kjðtÞ in Table 4 was estimated by repeatedly simulating one
time-step forward from those resident densities with the inva-
der occupying one additional site, and averaging over repli-
cates. This ensures that, e.g. Dc measures only the direct
effects of having or not having plant–soil feedbacks, not the
indirect effects mediated by changes in resident species abun-
dance due to presence or absence of plant–soil feedbacks.
Figure 3 shows the estimated contributions to invasion growth

rate of local retention (DF), plant–soil feedbacks (Dc), and their
interaction, as a function of local retention (F). As expected,
local retention in the absence of plant–soil feedbacks (DF) has lit-
tle effect, but local retention combined with plant–soil feedbacks
(DFc) reduces invader growth rates (anti-stabilising). Plant–soil
feedbacks alone (Dc) increase the invader growth rate for all spe-
cies (stabilising), because in the absence of local retention almost
no invader seeds fall into an invader-occupied site, while many
resident seeds fall into a site occupied by a conspecific. These
results let us understand Petermann et al.’s findings as follows:
coexistence occurs when the stabilising effect of plant–soil feed-
backs is not dominated by the anti-stabilising effect of the inter-
action between plant–soil feedbacks and local seed retention.

Facilitation and coexistence among beach grasses

Many ecologists have called for coexistence theory to better
integrate positive interactions alongside the traditional focus
on competition (Bruno et al. 2003; McIntire & Fajardo 2013;
Bulleri et al. 2015). While mechanistic consumer-resource
models can readily incorporate positive interactions (Gross
2008), facilitation in phenomenological, Lotka-Volterra type
competition models poses problems for coexistence theory.
Positive interspecific interactions (negative competition coeffi-
cients, in the Lotka-Volterra convention) can lead to infinite
population growth (Gause & Witt 1935), and additionally
Chesson’s (2013) expression for niche overlap becomes invalid
as it can include the square root of a negative number. In this
section we show how our approach makes it possible to quan-
tify the impacts of positive interactions on coexistence in
Lotka-Volterra type models.
Zarnetske et al. (2013) used field and experimental data to

parameterise a Lotka–Volterra model for beach grass commu-
nities in the US Pacific Northwest comprised of Ammophila
arenaria (AA), Ammophila breviligulata (AB), and Elymus
mollis (EM). Interactions among these species are a mix of
competition and facilitation. The Zarnetske et al. (2013)
model is
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dxi
dt

¼ rixi

�
1� K�1

i

X3
j¼1

aijxj

�
ð24Þ

with aii = 1 for i = 1,2,3. We used parameter estimates from
their Table S3-A for low sand input (because those were most
robust to the assumed time to reach equilibrium), and the
maximum assumed time to equilibrium (because those esti-
mates use the weakest assumptions about unmeasured densi-
ties). The estimated competition coefficients are

a ¼
1
A

0
@

by AA by AB by EM

1:000 �0:214 0:131
�0:358 1:000 0:370
0:089 �0:139 1:000

on AA
on AB
on EM

ð25Þ

Negative coefficients indicate facilitation: AA facilitates AB,
AB facilitates AA and EM.

We performed a T-decomposition with two main effects,
facilitation by AA and facilitation by AB, relative to the no-
facilitation situation in which all negative aij are set to 0. As in
the T-decomposition for competing diatoms, we change traits
(a values) but leave the environment (equilibrium species abun-
dances) “as is”. So for example, paralleling the diatom
T-decomposition formulas in Table 1, with species i invading
we have

e0j ¼ rj 1� K�1
j

X
m 6¼i

~a0jm�xm

 !
; j ¼ 1; 2; 3: ð26Þ

where �xm is the equilibrium value of xm when xi = 0 in (24)
with the estimated competition coefficients, and ~a0 are modi-
fied coefficients with facilitation removed by setting all nega-
tive values to zero. Because per-capita population growth
rates are linear in the competition coefficients, all interaction
terms are zero.

Figure 3 Strength of coexistence mechanisms as a function of the probability of local retention F in the plant–soil feedback model of Petermann et al. (2008).

The dotted cyan curve at 0 is drawn to provide a visual baseline. We only consider F ≤ 0.7 because stable coexistence is lost when F is slightly larger.

Comparison with the analytic decomposition (section SI.8) shows that values for grass at F = 0.7 are slightly inaccurate, probably because one resident

(legume) has very low steady-state abundance. Figure generated by PetermannPartitioning.R and plotPetermannDeltas.R
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Results (Table 5) were calculated for all three resident
weightings (eqn 20). For each species, each column is a parti-
tion of the species’ invasion growth rate rinv (i.e. each column
sums to rinv for the species, apart from rounding errors). For
AA and AB the three weightings give equivalent results: facili-
tation is relatively unimportant, and all species would persist
without facilitation because intraspecific competition out-
weighs inter-specific competition (all resident weightings give
identical results for AB, because with AB as a rare invader,
neither of the residents AA and EM experiences any direct
impacts of facilitation). For EM, the equal weighting and
pairwise comparisons are similar: AB facilitation contributes
1/3 to 1/2 of invasion growth rate but is not essential for per-
sistence, while AA facilitation may have a small negative
effect. But in the comparison using scaling factors, Dq, facilita-
tion by AA makes a large negative contribution. This occurs
because qEM,AB = 4.7, so facilitation of AB by AA (which is a
detriment to EM) is weighted very heavily. The result of this
large qir value is that a feature of low importance in both
pairwise comparisons between EM and one resident becomes
important when EM is compared to both residents weighted
by their scaling factors. Such outcomes are one of our reasons
for emphasising equal weight and pairwise invader–resident
comparisons.

Structured populations: process-specific niche differences in

sagebrush steppe

Chu & Adler (2015) used multispecies size-structured integral
projection models (IPM) to compare the importance of

stabilising features that act independently on the recruitment
(R), survival (S), and growth (G) of the four dominant species
in a sagebrush steppe community. Here we revisit their analy-
sis using our approach. The main difference is that the Chu &
Adler (2015) analysis was based on invader growth rates, not
invader–resident comparisons. See Chu & Adler (2015) for full
details of the models, data, and parameter estimation; the
main features of the model are summarised in SI.9.
The key model feature for our analysis is that for each

demographic rate V = R,S or G there is a matrix aV of inter-
action coefficients that determine the impact on that rate of
competition with neighbouring plants of each species,

wV
j ðu; tÞ ¼

X4
k¼1

aVjkwjkðu; tÞ: ð27Þ

Here wjk(u,t) is a measure of average species-k cover within
the competition neighbourhood of a size-u individual in spe-
cies j, and wVðu; tÞ is the overall impact of all neighbours on
demographic rate V. Differences between intra- and inter-spe-
cific interaction coefficients in aV generate measures of pair-
wise “niche difference," defined in SI.9.
We performed a T-decomposition with three main effects,

the niche differences affecting recruitment, growth, and sur-
vival, represented by the competition coefficients aVij . Follow-
ing Chu & Adler (2015), the “no-niche” state is defined by
modifying all between-species aij values (in aR,aS and aG) so
that each pairwise niche overlap qij equals 1, without changing
the fitness differences jj/ji. Formulas for q,j and how they
were adjusted are in SI.9. In a two-species Lotka-Volterra

Table 5 Results for the beach grass model of Zarnetske et al. (2013) with different resident weightings

Ammophila arenaria (AA)

�rinv ¼ 0:17=month

Ammophila breviligulata (AB)

�rinv ¼ 0:25=month

Elymus mollis (EM)

�rinv ¼ 0:36=month

Equal qir �AB �EM Equal qir �AA �EM Equal qir �AA �AB

D0 0.19 0.14 0.14 0.25 0.19 0.19 0.19 0.19 0.24 0.62 0.23 0.26

DAA 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.06 �0.04 �0.38 0.00 �0.08

DAB -0.02 0.03 0.03 �0.08 0.00 0.00 0.00 0.00 0.15 0.11 0.12 0.18

Growth rate contribution D0 is invader–resident comparison of “null” growth rates when all facilitation is eliminated, and DAA and DAB are the main effects

of facilitation by AA and AB, respectively. The different invader–resident weightings (column headings) are defined in eqn (12); “Equal” denotes equal

weighting of residents, qir denotes weighting by Chesson’s scaling factors, and “�XY” denotes a pairwise comparison between the species in the table head-

ing as the invader, with competing species XY as resident. The scaling factors qir are derived in sect. SI.7. Tabulated values are calculated by Beach-
grass_TraitDecomp.R and BeachgrassFuns.R

Table 6 Main effects and interactions of niche differences impacting Recruitment, Growth, and Survival in the four dominant species in Idaho sagebrush

steppe

Species �rinv (1/yr) D0 DR DG DS DRG DRS DGS DRGS

Artemisia tripartita 0.015 �1.16 0.00 0.55 0.68 �0.01 �0.02 �0.03 0.01

Hesperostipa comata 0.25 0.12 0.13 �0.06 0.09 �0.01 �0.03 0.01 0.00

Poa secunda 0.43 0.15 0.29 0.03 0.04 �0.04 �0.06 0.00 0.01

Pseudoroegneria spicata 0.20 0.35 0.10 �0.20 �0.04 �0.00 �0.01 0.01 0.00

Stabilising 0.13 0.08 0.19 �0.02 �0.03 �0.00 0.01

�rinv is invasion growth rate when niche differences at all stages are present, and D0 is the no-niche-differences growth rate. Tabulated values were calculated

by partition_simulations.R and scripts that it sources.
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community, the values of qij and jij determine whether or not
all species coexist stably. But with more species, indirect
effects can be important (e.g. A facilitates B by harming C).
Nonetheless, we regard qij = 1 as a reasonable definition of
what it means for species i and j to have no niche differences
in this model, and Chesson (2013) argued that jj/ji is a valid
general measure of pairwise fitness differences in multispecies
communities.
Details of the calculations are in SI.9. The results (Table 6)

are qualitatively congruent with the conclusions in Chu &
Adler (2015): niche differences affecting recruitment (DR) con-
tribute most to persistence of the grasses, while those affecting
survival (DS) are most important for the shrub Artemisia.
However, one notable difference is that effects of niche differ-
ences on growth are detrimental to Hesperostipa and Pseu-
doroegneria, and effects on survival are detrimental to
Pseudoroegneria, whereas Chu & Adler (2015, fig. 5C) con-
cluded that all effects of niche differences are at least mildly
helpful. The detrimental effects arise in our analysis because
benefits to an invading grass species are outweighed by larger
benefits to their competitor Artemisia. When our analysis is
redone with Artemisia removed from the community (results
not shown), all effects of niche differences are helpful to all
three grasses. This difference between our analysis and Chu &
Adler (2015) illustrates the importance of invader–resident
comparison: a seemingly beneficial feature may hurt you by
helping your competitor more than it helps you.

DISCUSSION

We believe that the mathematical complexity and subtleties of
standard MCT, and the approximate analytic formulas it
requires for empirical applications, have obscured the simplic-
ity, generality, and power of the underlying ideas, and
obstructed the path to empirical applications. We have tried
to break this logjam by separating the underlying concepts
from the mathematical implementation, and providing a more
general computational implementation. Our approach is not a
replacement for analytic MCT – it is an additional tool, for
detailed analysis of specific systems.
We abandon analytic MCT’s requirement to use scaling fac-

tors qir in invader–resident growth rate comparisons. The scal-
ing factors remove a term from the analytic growth rate
decompositions for fluctuation-dependent mechanisms, allow-
ing some necessary calculations even when the dynamics of
the limiting factors for which species compete are unknown
(Barab�as et al. 2018). That term is not problematic in our
approach, because all terms are evaluated using experimental
or simulated data. Similarly, we abandon growth rate scalings
in stablising components, which have a firm theoretical foun-
dation only for the case of a single limiting factor (Barab�as
et al. 2018). We also do not use the small-variance approxi-
mations that eliminate many interaction terms.
The main benefit of our approach is that analytic formulas

are replaced by simulations or data, so new case studies or
coexistence mechanisms do not require new math. This benefit
is illustrated by our case studies, which include features
(higher-order interactions between temperature and resource
variability, interacting fluctuation-independent spatial

mechanisms, facilitation, and stage-specific niche differences in
structured populations) that have not been analyzed within
the standard framework. Many of these probably could be
analyzed in the standard framework, but our approach gives
more accurate and more complete answers, with much less
effort.
The main weakness of our approach is that analytic formu-

las are replaced by simulations or data, so we do not get the
generality and qualitative insights that can come from analytic
formulas for coexistence mechanisms. Levins (1966) con-
trasted three incompatible goals of population modelling: gen-
erality, realism, and precision. Our approach provides realism
and precision, giving a complete decomposition when the pro-
cesses in a community have been modelled quantitatively, but
the results are specific to the modelled community. Generality,
a strength of analytic MCT, can only emerge with our
approach by identifying general patterns in numerical results.
Like analytic MCT, our approach requires a way to calcu-

late population growth rates as a function of the factors that
determine their values at any time, and data (empirical, or
simulation-derived) on the patterns of variation in those fac-
tors. There is no methodological cure for this requirement. To
fully understand how species coexist we need to know what
factors limit population growth rates, and quantify the
impacts of each factor. Measuring and modelling population
responses to multiple limiting factors in the field is especially
challenging for long-lived species with complex life cycles, but
even for short-lived species such as annual plants, describing
population responses to variation in community composition
and spatial and temporal environmental variation can be diffi-
cult. However, like analytic MCT our approach can also be
applied to a single component of population growth rate, in
the manner of Sears & Chesson (2007) who compared the
contributions of spatial storage effect and local resource com-
petition to seed yield in two desert annuals. This is accom-
plished by using the focal component (e.g. per capita
fecundity) as the response variable, rather than population
growth rate, and empirical data on the driving variables.
Discussion about how to quantify coexistence mechanisms

will benefit from applying our approach to more case studies.
Several times a new case study revealed to us that a seemingly
wonderful idea was fatally flawed. Abandoning the scaling
factors qir may be contentious, and therefore is likely to
evolve. We have noted conceptual and practical difficulties
with the qir, and suggested equal weighting of residents as a
simple alternative, but equal weighting may not be appropri-
ate when some resident species are far more common than
others. Our approach also needs to be expanded further to
encompass many important situations that we cannot yet
address, including spatiotemporal variation, many individual-
or grid-based spatial models (e.g. Adler et al. 2006), and pro-
cesses occurring continuously in time as organisms move
through space.
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